Co-expression of Extensively drug resistant (XDR) clinical isolates of Pseudomonas aeruginosa harboring FOX and MOX ampicillinase Gene
DOI:
https://doi.org/10.22270/ijmspr.v9i3.76Keywords:
XDR, Pseudomonas aeruginosa, FOX, MOX ampicillinaseAbstract
This study determines the Co-expression of clinical isolates of XDR Pseudomonas aeruginosa harboring FOX and MOX ampicillinase Gene. A total of five (500) hundred “Clean catch” midstream urine and wound samples collected from patients at a tertiary healthcare institution in Ebonyi State Nigeria were analyzed using standard microbiological techniques. Determination of XDR Pseudomonas aeruginosa isolates was by Kirby-Bauer disc diffusion method. Molecular characterization of FOX and MOX ampicillinase resistant genes were done by PCR using specific primers. In total, the Pseudomonas aeruginosa accounted for 22.6 %. XDR Pseudomonas aeruginosa accounted for 17. 8 % and 25.3 % in Wound and urine samples respectively. All the XDR Pseudomonas aeruginosa harbored FOX and MOX ampicillinase resistant Gene. The high frequency of XDR Pseudomonas aeruginosa in our study is very worrisome and could have significant public health impact such as treatment failures, and possibly death, if not properly managed. The solutions to this crisis are to allocate more resources to basic and clinical research and to infection control and antimicrobial stewardship, to develop new antimicrobials, and to optimize the use of those that are currently available.
Keywords: XDR, Pseudomonas aeruginosa, FOX, MOX ampicillinase
References
Ogba RC, Nomeh OL, Edemekong CI, Nwuzo AC, Akpu PO, Peter, I. U, Iroha IR, Molecular Characterization of Carbapenemase Encoding Genes in Pseudomonas aeruginosa from Tertiary Healthcare in South Eastern Nigeria, Asian Journal of Biology, Genetic and Molecular Biology, 2022a; 12(4):161-168. https://doi.org/10.9734/ajbgmb/2022/v12i4281
Ogba R C, Akpu, PO, Nwuzo AC, Peter IU, Nomeh LO, Iroha I R, Antibiotic Susceptibility Profile of Clinical Isolate of Carbapenem Resistant Pseudomonas aeruginosa, South Asian Journal of Research in Microbiology, 2022b; 14(2):14-23. https://doi.org/10.9734/sajrm/2022/v14i2267
Gill CM, Aktaþ E, Alfouzan W, Bourassa L, Brink A, Burnham CD, Canton R, Carmeli Y, Falcone M, Kiffer C, Marchese A, Martinez O, Pournaras, S, Satlin M, Seifert H, Thabit AK, Thomson K S, Villegas MV, Nicolau DP, ERACE-PA Global Study Group, The ERACE-PA Global Surveillance Program: Ceftolozane/tazobactam and Ceftazidime/avibactam in vitro Activity against a Global Collection of Carbapenem-resistant Pseudomonas aeruginosa, European Journal of Clinical Microbiology Infectious Disease, 2021; 40(12):2533-2541. https://doi.org/10.1007/s10096-021-04308-0 PMid:34291323 PMCid:PMC8590662
Tenover F C, Nicolau D P, Gill C M, Carbapenemase producing Pseudomonas aeruginosa -an Emerging Challenge, Emerging Microbes and Infections, 2022; 11:1811-814 https://doi.org/10.1080/22221751.2022.2048972 PMid:35240944 PMCid:PMC8920394
Lyu J, Chen H, Bao J, Liu S, Chen Y, Cui X, Guo C, Gu B, Li L, Clinical Distribution and Drug Resistance of Pseudomonas aeruginosa in Guangzhou, China from 2017 to 2021, Journal of Clinical Medicine, 2023; 12:11-89. https://doi.org/10.3390/jcm12031189 PMid:36769837 PMCid:PMC9917919
Hafiz TA, Bin Essa EA, Alharbi S R, Alyami AS, Alkudmani ZS, Mubaraki MA, Alturki NA, Alotaibi F, Epidemiological, Microbiological, and Clinical Characteristics of Multi-Resistant Pseudomonas aeruginosa Isolates in King Fahad Medical City, Riyadh, Saudi Arabia. Journal of Tropical Medicine and Infectious Disease, 2023; 8:205-207. https://doi.org/10.3390/tropicalmed8040205 PMid:37104331 PMCid:PMC10145365
World Health Organization WHO, Global strategy for containment of antimicrobial resistance. Geneva: WHO; 2019.
Pérez A, Gato E, Pérez-Llarena J, Fernández-Cuenca F, Gude M J, Oviaño M, Pachón M E, Garnacho J, González V, Pascual, Á, High Incidence of MDR and XDR Pseudomonas aeruginosa Isolates Obtained from Patients with Ventilator-associated pneumonia in Greece, Italy and Spain as part of the Magic Bullet Clinical Trial, Journal of Antimicrobial Agent and Chemotherapy, 2019; 74(5):1244-52. https://doi.org/10.1093/jac/dkz030 PMid:30753505
Saleem S, Bokhari H, Resistance Profile of Genetically Distinct Clinical Pseudomonas aeruginosa Isolates from Public Hospitals in Central Pakistan, Journal of Infection and Public Health, 2019; 13(4):598-605. https://doi.org/10.1016/j.jiph.2019.08.019 PMid:31564530
Mirzaei B, Bazgir Z N, Goli H R, Iranpour F, Mohammadi F, Babaei, R, Prevalence of Multi-drug Resistant (MDR) and Extensively Drug-resistant (XDR) Phenotypes of Pseudomonas aeruginosa and Acinetobacter baumannii Isolated in Clinical Samples from Northeast of Iran, BMC Research Notes, 2020; 13:380-400. https://doi.org/10.1186/s13104-020-05224-w PMid:32778154 PMCid:PMC7418330
Liu G, Qin M, Analysis of the Distribution and Antibiotic Resistance of Pathogens Causing Infections in Hospitals from 2017 to 2019, Evidence-Based Complementary and Alternative Medicine, 2022; 17:20-23. https://doi.org/10.1155/2022/3512582 PMid:36159558 PMCid:PMC9507740
European Centre for Disease Prevention and Control (ECDC), European Antimicrobial Resistance Surveillance Network, Available online: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2019.
Poole K, Pseudomonas aeruginosa: resistance to the max, Frontier in Microbiology, 2011; 2:65-67. https://doi.org/10.3389/fmicb.2011.00065 PMid:21747788 PMCid:PMC3128976
Oliver A, Mulet X, López-Causapé C, Juan C, The increasing threat of Pseudomonas aeruginosa high-risk clones, Drug Resistance Update, 2015; 21(22):41-59 https://doi.org/10.1016/j.drup.2015.08.002 PMid:26304792
Akpu P O, Uzoeto HO, Peter I U, Nomeh O L, Nwuzo AC, Ogba RC, Iroha IR, First Report Occurrence of CIT and DHA AmpC β-lactamase Gene in Escherichia coli and Klebsiella pnuemoniae from Clinical Samples in South Eastern, Nigeria, Asian Journal of Biochemistry, Genetics and Molecular Biology, 2023a; 13(1):30-36. https://doi.org/10.9734/ajbgmb/2023/v13i1285
Akpu P O, Nomeh O L, Moneth EC., Stella A O, Ogba RC, Peter I U, Iroha IR, Phenotypic Detection of AmpC β-lactamase Producing Escherichia coli among Patients in Hospital Wards, Journal of Advances in Microbiology, 2023b; 23(1):26-34. https://doi.org/10.9734/jamb/2023/v23i1702
Joji RM, Al-Mahameed AE, Al Jishi T, Fatani DI, Saeed NK, Jaradat A, et al. Molecular detection of plasmid-derived AmpC β-lactamase among clinical strains of Enterobacteriaceae in Bahrain, Annal of Thoracic Medicine, 2021; 16:287-93. https://doi.org/10.4103/atm.ATM_523_20 PMid:34484445 PMCid:PMC8388573
Golsha R, Maryam M, Nazanin R, Mina EZ, Frequency of beta-lactamase antibiotic resistance genes in Escherichia Coli and Klebsiella pneumoniae, Gorgan, Iran, Ethiopian Journal of Health Science, 2021; 31(3):663.
Ejikeugwu C, Esimone C, Iroha IR, Adikwu M, First detection of FOX-1 AmpC β-lactamase gene expression among Escherichia coli isolated from abattoir samples in Abakaliki, Nigeria, Oman Medical Journal, 2018; 33(3):243-249. https://doi.org/10.5001/omj.2018.44 PMid:29896333 PMCid:PMC5971057
Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 28th Edition.; Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2019.
Oke B, Iroha I R, Moses I B , Egwu I H, Elom E, Uzoh C V, Nwode V F, Okpada J O, Agbom J N, Peter I U, Ibeka G U, Killing Rate Kinetics of Commercially Available Brands of Ciprofloxacin and Cefotaxime on Clinical Bacterial Isolates Subjected to in vitro Antibiotic Treatments, International Journal of Pharmaceutical Science Review and Research, 2020; 64(2):87-97 https://doi.org/10.47583/ijpsrr.2020.v64i02.015
Uzoije U N, Moses I B, Nwakaeze E A, Uzoeto H O, Otu J O, Egbuna N R, Ngwu J N, Chukwunwejim C R, Mohammed D I, Peter I U, Oke B, Iroha I R, Prevalence of Multidrug-resistant Bacteria Isolates in Waste Water from Different Hospital Environment in Umuahia, Nigeria, International Journal of Pharmaceutical Science Review and Research, 2021; 69(2): 25-32. https://doi.org/10.47583/ijpsrr.2021.v69i02.003
Rodulfo H, Arcia A, Hernández A, Michelli E, Martinez D D V, Guzman M, Sharma A, Donato M, Virulence factors and integrons are associated with MDR and XDR phenotypes in nosocomial strains of Pseudomonas aeruginosa in a Venezuelan University Hospital, Review in Institute of Medical Tropicalis Sao Paulo, 2019; 61:20-23. https://doi.org/10.1590/s1678-9946201961020 PMid:30970111 PMCid:PMC6453424
Edemekong CI, Uzoeto HO, Mbong EO, Ikusika BA, Didiugwu, CM, Ngwu JN, NseAbasi PL, Ntekpe ME, Mohammed ID, John-Onwe BN, Alagba EE, Obodoechi IF, Joseph OV, Ogbonna IP, Ubom IJ, Peter IU, Molecular characterization and bioassay of soil Actinomycetes strains on multidrug resistant bacteria, IOSR Journal of Biotechnology and Biochemistry, 2022; 34(1):6-11.
Adibe-Nwafor J O, Peter I U, Nwafor K A, Iroha C S, Onuora A L, Edemekong C I, Ibiam F A, Iroha I R, Pisciculture and Fish Parts as Non-clinical Source of CTX-M and TEM Extended Spectrum Beta-lactamases Producing Escherichia coli in Southeastern Nigeria, Asian J Fisheries and Aquatic Research, 2023; 23(5):18-25. https://doi.org/10.9734/ajfar/2023/v23i5613
Olayinka AT, Onile BA, Olayinka BO, Prevalence of multi-drug resistant (MDR) Pseudomonas aeruginosa isolates in surgical units in Ahmadu Bello University Teaching Hospital, Zaria, Nigeria: An indication for effective control measures, Annals of African Medicine, 2004; 3(1):13-16
Okon KO, Agukwe PC, Oladosu W, Balogun ST, Uba A, Antibiotic resistance pattern of Pseudomonas aeruginosa isolated from clinical specimens in a tertiary care hospital in Northeastren Nigeria, Internet Journal of Microbiology, 2010; 2(9)8:1-6. https://doi.org/10.5580/a34
Rajat R M, Ninama G L, Mistry K, Parmar R, Patel K, Vegad M M, Antibiotic resistance pattern in Pseudomonas aeruginosa species isolated at a tertiary care Hospital, Ahmadabad, National Journal of Medical Research, 2012; 2(11):156-9.
Javiya VA, Ghatak S B, Patel K R, Patel JA, Antibiotic susceptibility patterns of Pseudomonas aeruginosa at a Tertiary Care Hospital in Gujarat, India, Indian Journal of Pharmacology, 2008; 40:230-4. https://doi.org/10.4103/0253-7613.44156 PMid:20040963 PMCid:PMC2792624
Sewunet T, Asrat D, Woldeamanuel Y, Aseffa A, Giske CG, Molecular Epidemiology and Antimicrobial Susceptibility of Pseudomonas species and Acinetobacter species from Clinical Samples at Jimma Medical Center, Ethiopia, Frontier in Microbiology, 2022; 13:951-857. https://doi.org/10.3389/fmicb.2022.951857 PMid:36204631 PMCid:PMC9530197
Schäfer E, Malecki M, Tellez-Castillo C J, Pfennigwerth N, Marlinghaus L, Higgins P G, Mattner F, Wendel A F, Molecular Surveillance of Carbapenemase producing Pseudomonasaeruginosa at Three Medical Centres in Cologne, Germany, Antimicrobial Resistance and Infection Control, 2019; 8:208-209 https://doi.org/10.1186/s13756-019-0665-5 PMid:31893042 PMCid:PMC6937969
Zilberberg M, Shorr A F, Prevalence of Multidrug-resistant Pseudomonas aeruginosa and carbapenem-resistant Enterobacteriaceae among Specimens from Hospitalized Patients with Pneumonia and Bloodstream Infections in the United States from 2000 to 2009. Journal of Hospital Medicine, 2013; 8: 559-563. https://doi.org/10.1002/jhm.2080 PMid:24022878
Estaleva C E L, Zimba T F, Sekyere J O, Govinden U, Chenia HY, Simonsen G S, Haldorsen B, Essack S Y, Sundsfjord A, High prevalence of Multidrug resistant ESBL- and Plasmid mediated AmpC-producing Clinical Isolates of Escherichia coli at Maputo Central Hospital, Mozambique, BMC of Infectious Disease, 2021; 21:16-45. https://doi.org/10.1186/s12879-020-05696-y PMid:33407206 PMCid:PMC7789290
Wassef M, Behiry I, Younan M, El Guindy N, Mostafa S, Abada E, Genotypic Identification of AmpC β-lactamases production in Gram-negative Bacilli Isolates, Jundishapur Journal of Microbiology, 2014; 7:85-56. https://doi.org/10.5812/jjm.8556 PMid:25147649 PMCid:PMC4138665
Alvarez M, Tran J H, Chow N, Jacoby G A, Epidemiology of Conjugative Plasmid-mediated AmpC beta-lactamases in the United States, Journal of Antimicrobial Agent and Chemotherapy, 2004; 48(2):533-7. https://doi.org/10.1128/AAC.48.2.533-537.2004 PMid:14742206 PMCid:PMC321551
Manoharan A, Sugumar M, Kumar A, Jose H, Mathai D, Khilnani G C, Phenotypic and Molecular Characterization of AmpC Beta-lactamases among Escherichia coli, Klebsiella Species and Enterobacter Species from Five Indian Medical Centers, Indian Journal of Medical Research, 2012; 135:359 -64.
Chérif T, Saidani M, Decré D, Boutiba-Ben Boubaker I, Arlet G, Co-occurrence of Multiple AmpC β-Lactamases in Escherichia coli, Klebsiella pneumoniaee, and Proteus mirabilis in Tunisia, Journal of Antimicrobial Agent and Chemotherapy, 2015; 60(1):44-51 https://doi.org/10.1128/AAC.00828-15 PMid:26459902 PMCid:PMC4704229
Govindaswamy A, Bajpai V, Khurana S, Batra P, Mathur P, Malhotra R, Prevalence and Characterization of Carbapenemase-producing Escherichia coli from a Tertiary Care Hospital in India, Journal of Global Infectious Disease, 2019; 11:123-4. https://doi.org/10.4103/jgid.jgid_68_18 PMid:31543655 PMCid:PMC6733190
Rizia K S, Mosavatc A, Youssefib M, Jamehdarb S A, Ghazvinib K, Safdarib H, Aminid Y, Farsiani H, High Prevalence of blaCMYAmpC Beta-lactamase in ESBL Co-producing Escherichia coli and Klebsiella Specie Clinical Isolates in the Northeast of Iran, Journal of Global Antimicrobial Resistance, 2020; 22:477-482. https://doi.org/10.1016/j.jgar.2020.03.011 PMid:32247080
Published
How to Cite
Issue
Section
Copyright (c) 2023 Beatrice Ngozi John-Onwe , Francis Amadi Ibiam, Evangeline Chinyere Udenweze, Chidinma Stacy Iroha, Christiana Inuaesiet Edemekong, Ikemesit Udeme Peter, Ifeanyichukwu Romanus Iroha
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.